Перевести на Переведено сервисом «Яндекс.Перевод»

ЧЕЛОВЕЧЕСТВО МОЖЕТ ВЫИГРАТЬ ВОЙНУ ПРОТИВ БАКТЕРИЙ

Действие принципиально нового гибридного антибиотика направлено против мембранного потенциала бактерий, который обеспечивает болезнетворные клетки энергией.

В мае этого года в работе «Mitochondria-targeted antioxidants as highly effective antibiotics», опубликованной в журнале Scientific Reports, коллектив авторов из МГУ впервые показал принципиально новый гибридный антибиотик: его действие направлено против мембранного потенциала бактерий, который обеспечивает болезнетворные клетки энергией.

Победа! – но только временная

В середине прошлого столетия человечество находилось в состоянии эйфории, связанной с невероятными успехами в лечении инфекционных заболеваний бактериальной природы. Многие бактериальные инфекции, вызывавшие ужасающие по количеству жертв эпидемии в средние века, превратились в карантинные инфекции, которые легко и эффективно вылечивались.

Этот успех стал возможен после открытия в 1920-х годах британским бактериологом Александром Флемингом первого антибиотика – пенициллина; он обнаружился в плесневых грибах Penicillium notatum. Спустя десятилетие британские ученые Говард Флори и Эрнст Чейн предложили способ промышленного производства чистого пенициллина. Все трое в 1945 году были удостоены Нобелевской премии в области физиологии и медицины.

Массовое производство пенициллина было налажено во время Второй мировой войны, что вызвало резкое уменьшение смертности среди солдат, обычно умиравших от раневых инфекций. Это позволило французским газетам накануне визита Флеминга в Париж писать, что для разгрома фашизма и освобождения Франции он сделал больше целых дивизий.

Углубление знаний о бактериях привело к появлению большого числа антибиотиков, разнообразных по механизму, широте спектра действия и химическим свойствам. Почти все бактериальные заболевания либо полностью вылечивались, либо серьезно подавлялись антибиотиками. Люди полагали, что человек победил бактериальные инфекции.

Мелкие очаги сопротивления – и поражение

Одновременно с успехами появились и первые признаки грядущей глобальной проблемы: случаи бактериального сопротивления антибиотикам. Прежде безропотно чувствительные к ним микроорганизмы вдруг становились индифферентны. Человечество ответило бурным развитием исследований и новыми антибиотиками, это привело лишь к увеличению числа препаратов и новой резистентности бактерий.

В мае 2015 года Всемирная организация здравоохранения признала кризисом бактериальное сопротивление антибиотикам и выдвинула Глобальный план борьбы с устойчивостью к противомикробным препаратам. Его следовало выполнить безотлагательно, свои действия должны были координировать многочисленные международные организации вроде защитников окружающей среды, и отрасли экономики – не только человеческая медицина, но и ветеринария, и промышленное животноводство, и финансовые институты, и общества защиты прав потребителей.

План, должно быть, так или иначе выполняется, но к несчастью, несмотря на это уже в сентябре 2016 года одна американская пациентка умерла от сепсиса. Такое бывает, и даже чаще, чем хотелось бы, но ее погубила так называемая супербактерия – Klebsiella pneumoniae, но не обычная, а устойчивая ко всем разрешенным в США 26 антибиотикам, в том числе к антибиотику «последнего резерва» колистину.

Последний рубеж пал

Колистин считается антибиотиком последнего резерва – это старый препарат из класса полимиксинов, вышедший из употребления из-за своего токсического воздействия на почки. Когда обнаружились супербактерии, которые, кроме того что сами сопротивлялись известным антибиотикам, еще и обзавелись способностью передавать друг другу генную информацию, позволяющую сопротивляться антибиотикам, выяснилось, что во-первых, колистин губителен для всех этих бактерий, а во-вторых, бактерии не могут обмениваться генами резистентности к колистину, если вдруг таковая все-таки возникнет.

Увы, но в мае 2016 года в американское Хранилище мультирезистентных микроорганизмов, которое находится в структуре Исследовательского института имени Уолтера Рида (это структура армии США), поступила-таки бактерия, которая не просто была индифферентна к колистину, но еще и оказалась способна передавать генную информацию с этой резистентностью другим бактериям. Первый такой микроорганизм еще в 2015 году был зафиксирован в Китае, долгое время была надежда, что это единичный случай, но она не оправдалась. Особенно печально, что в США этим микроорганизмом оказалась всем хорошо знакомая кишечная палочка./ПРИМ

Итак, ученым стало очевидно, что бактериальные инфекции побеждают человечество, и современная медицина может быть отброшена во времена, предшествовавшие открытию антибиотиков. Одним из главных вопросов, поднятых на международной конференции ASM Microbe, проводившейся в Новом Орлеане в июне 2017 года Американским обществом микробиологов, был такой: «Может ли человечество выиграть войну с микробами?». На той же конференции, кстати, отдельного внимания удостоилось движение antimicrobial stewardship, или управление антибиотикотерапией, которое имеет своей целью максимально разумно и достаточно, в соответствии с рекомендациями доказательной медицины, назначать антибиотики. Пока что законом такое обращение с антибиотиками стало только в одном месте в мире – в штате Калифорния, США.

Антиоксиданты направляются в митохондрию

Но решение, обходящее резистентность бактерий, можно считать, найдено – российскими учеными. В мае этого года в работе «Mitochondria-targeted antioxidants as highly effective antibiotics», опубликованной в журнале Scientific Reports,коллектив авторов из МГУ впервые показал принципиально новый гибридный антибиотик широкого спектра действия – митохондриально направленный антиоксидант.

Митохондриально направленные антиоксиданты (МНА) получили широкое распространение не только как инструмент исследований роли митохондрий в разных физиологических процессах, но и как терапевтические средства. Это конъюгаты, то есть соединения, состоящие из какого-либо хорошо известного антиоксиданта (пластохинона, убихинона, витамина Е, ресвератрола) и проникающего, то есть способного преодолеть мембрану клетки или митохондрии, катиона (трифенилфосфония, родамина и др.).

Механизм действия МНА доподлинно не известен. Известно лишь, что в митохондрии они частично разобщают окислительное фосфорилирование, метаболический путь синтеза универсального клеточного горючего – аденозинтрифосфата, АТФ, что стимулирует клеточное дыхание и снижает мембранный потенциал и может приводить к защитному эффекту при окислительном стрессе.

Предположительно это выглядит так. МНА из-за своей липофильности (тяги к липидам или сродства с ними) связываются с мембраной митохондрии и постепенно мигрируют внутрь митохондрии, где, видимо, соединяются с отрицательно заряженным остатком жирной кислоты; составив комплекс, они теряют заряд и вновь оказываются снаружи мембраны митохондрии. Там остаток жирной кислоты захватывает протон, из-за чего комплекс распадается. Захватившая протон жирная кислота переносится в обратном направлении – и внутри митохондрии теряет протон, то есть, проще говоря, переносит его в митохондрию, отчего как раз и снижается мембранный потенциал.

Один из первых МНА был создан на основе трифенилфосфония в Оксфорде – английским биологом Майклом Мерфи; это был конъюгат с убихиноном (или коферментом Q, принимающим участие в окислительном фосфорилировании). Под названием MitoQ этот антиоксидант получил значительную известность как перспективный препарат для замедления старения кожи, а также как возможное средство защиты печени при гепатитах и жировом ее перерождении.

Позднее тем же путем пошла группа академика Владимира Скулачева из МГУ: на основе конъюгата трифенилфосфония с антиоксидантом пластохиноном (участвует в фотосинтезе) был создан эффективный SkQ1.

В соответствии с симбиотической теорией происхождения митохондрий, выдвинутой членом-корреспондентом АН СССР Борисом Михайловичем Козо-Полянским в 1920-х годах и американским биологом Линн Маргулис в 1960-х годах, между митохондриями и бактериями – много общего, и можно ожидать, что МНА будут воздействовать на бактерии. Однако несмотря на очевидную схожесть бактерий и митохондрий и десятилетний опыт работы с МНА во всем мире никакие попытки обнаружить антимикробное действие МНА не приводили к положительным результатам.

Загадка двух палочек

Прорыв случился в 2015 году: впервые антибактериальное действие МНА на примере SkQ1 было показано в работе «Разобщающее и токсическое действие алкил-трифенилфосфониевых катионов на митохондрии и бактерии Bacillus subtilisв зависимости от длины алкильного фрагмента» – ее опубликовал журнал «Биохимия» в декабре 2015 года. Но то было описанием феномена: эффект наблюдался при работе с сенной палочкой (Bacillus subtilis) и не наблюдался при работе с палочкой кишечной (Escherichia coli).

Но дальнейшие исследования, которые легли в основу новейшей работы, опубликованной в журнале Scientific Reports, показали, что МНА SkQ1 – высокоэффективный антибактериальный агент в отношении широкого спектра грамположительных бактерий. SkQ1 эффективно подавляет рост таких надоедливых бактерий, как золотистый стафилококк (Staphylococcus aureus) – один из четырех наиболее частых видов микроорганизмов, вызывающих внутрибольничные инфекции. Так же эффективно SkQ1 подавляет рост микобактерий, в том числе палочки Коха (Mycobacterium tuberculosis). Более того, МНА SkQ1 оказался высокоэффективным средством против грамотрицательных бактерий, таких как Photobacterium phosphoreum и Rhodobacter sphaeroides.

И только в отношении кишечной палочки он был крайне неэффективен, а ведь именно Escherichia coli – та бактерия, которую микробиологи используют как модельный организм, что и было, по-видимому, причиной неудачных попыток ранее обнаружить антимикробное действие МНА.

Естественно, исключительная резистентность кишечной палочки вызвала весьма сильный интерес исследователей. К счастью, современная микробиология сделала большой шаг вперед в методологическом аспекте, и у ученых созданы целые коллекции микроорганизмов с делециями (отсутствием) некоторых генов, не вызывающими их гибель. Одна из таких коллекций – делеционных мутантов кишечной палочки – находится в распоряжении МГУ.

Исследователи высказали предположение, что резистентность может быть обусловлена работой какой-либо из помп множественной лекарственной устойчивости, имеющихся у кишечной палочки. Любая помпа плоха для инфицированного человека тем, что просто выбрасывает из бактериальной клетки антибиотик, он на нее не успевает подействовать.

AcrAB-TolC.jpgКак работает помпа

Действие помпы можно проиллюстрировать на примере основной помпы множественной лекарственной устойчивости кишечной палочки – AcrAB-TolC. 

Эта помпа состоит из трех основных компонентов: (1) белка внутренней клеточной мембраны AcrB, который за счет мембранного потенциала может перемещать вещества через внутреннюю мембрану (2) адаптерного белка AcrA, связывающего транспортер AcrB с (3) каналом на внешней мембране TolC. 

Точный механизм работы помпы остается недостаточно изученным, однако известно, что вещество, которое помпа должна выбросить за пределы клетки, попадает на внутреннюю мембрану, где его ждет транспортер AcrB, связывается с активным центром помпы и затем за счет энергии встречного движения протона выкачивается за пределы наружной мембраны бактерии.

Генов, отвечающих за действие помп множественной лекарственной устойчивости, у кишечной палочки много, и было решено начать анализ с продуктов генов, входящих в состав сразу нескольких помп,– а именно белка TolC.

Белок TolC – канал на внешней мембране грамотрицательных бактерий, он служит внешней частью для нескольких помп множественной лекарственной устойчивости.

Анализ делеционного мутанта (то есть палочки без белка TolC) показал, что его резистентность снизилась на два порядка и стала неотличима от резистентности грамположительных бактерий и нерезистентных грамотрицательных бактерий. Таким образом, можно было заключить, что выдающаяся резистентность кишечной палочки – результат работы одной из помп множественной лекарственной устойчивости, имеющих в составе белок TolC. А дальнейший анализ делеционных мутантов по белкам – компонентам помп множественной лекарственной устойчивости показал, что только помпа AcrAB-TolC участвует в откачке SkQ1.

Резистентность, вызванная наличием помпы AcrAB-TolC, не выглядит непреодолимой преградой: антиоксидантный конъюгат SkQ1 – также уникальное для этой помпы вещество, очевидно, можно будет найти для нее ингибитор.

Не только лечить, но и чинить

Но чтобы называться антибиотиком, SkQ1 необходимо соответствовать множеству критериев, таких как (1) способность подавлять жизненные процессы микроорганизмов в малых концентрациях и (2) мало повреждать или вовсе не повреждать клетки человека и животных. Сравнение SkQ1 c известными антибиотиками – канамицином, хлорамфениколом, ампициллином, ципрофлоксацином, ванкомицином и пр. – показало, что SkQ1 действует на бактерии в таких же, как они, или даже более низких концентрациях. Более того, при сравнительном исследовании действия SkQ1 на культуру клеток человека линии HeLa выяснилось, что в минимальной бактерицидной концентрации SkQ1 не оказывает практически никакого воздействия на клетки человека – а замечают клетки SkQ1, когда концентрация антиоксидантного конъюгата становится более чем на порядок выше необходимой для бактерицидного действия.

Механизм действия SkQ1 на бактерии оказался подобен действию МНА на митохондрии, однако общее действие на прокариотическую и эукариотическую клетку различалось. Одна из главных причин – пространственное разделение процессов генерации энергии (исключая субстратное фосфорилирование) и процессов транспорта веществ внутрь клетки, что, по-видимому, представляет собой существенное эволюционное преимущество, которое часто обходят вниманием при рассмотрении выгод от сожительства протомитохондрии и протоэукариота. Так как у бактерий генерация энергии и транспорт локализованы на клеточной мембране, то падение потенциала вызывает, по-видимому, остановку сразу обоих процессов, что приводит к смерти микроорганизма. В эукариотической клетке процессы транспорта веществ внутрь клетки локализованы на клеточной мембране, а генерация энергии происходит в митохондриях, что позволяет эукариотической клетке выживать при летальных для бактерий концентрациях МНА. Кроме того, разность потенциала на мембране бактерии и эукариотической клетки различается в пользу бактерий – и это тот самый дополнительный фактор, аккумулирующий МНА на мембране бактерий.

Рассматривая механизм действия SkQ1 на бактерии, нельзя пройти мимо другого уникального свойства этого МНА – способности лечения поврежденных бактериями эукариотических клеток за счет антиоксидантных свойств. SkQ1, действуя как антиоксидант, снижает уровень вредных активных форм кислорода, образующихся при воспалении, вызванном бактериальной инфекцией.

Таким образом, SkQ1 может быть признан уникальным гибридным антибиотиком широчайшего спектра действия. Дальнейшая разработка антибиотиков на его основе может позволить переломить ход войны человечества против все более совершенных микробов.

Павел Назаров, кандидат биологических наук, НИИ физико-химической биологии МГУ 
«Коммерсантъ Наука» №5, июль 2017
Опубликовано на сайте «Элементы»

Портал «Вечная молодость» http://vechnayamolodost.ru

Войдите или зарегистрируйтесь на сайте, чтобы добавить комментарий к интересующей вас научной проблеме!
Комментарии (0)

Также вам может быть интересно